Self-adaptive mechanisms for the identification of the most suitable variation operator in evolutionary algorithms rely almost exclusively on the measurement of the fitness of the offspring, which may not be sufficient to assess the optimality of an operator (e.g., in a landscape with an high degree of neutrality). This paper proposes a novel adaptive operator selection mechanism which uses a set of four fitness landscape analysis techniques and an online learning algorithm, dynamic weighted majority, to provide more detailed information about the search space to better determine the most suitable crossover operator. Experimental analysis on the capacitated arc routing problem has demonstrated that different crossover operators behave differently during the search process, and selecting the proper one adaptively can lead to more promising results.