synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
Keywords SOM · Synoptic circulation · Rainfall variability · Southern AfricaThe relationship between synoptic circulation and local expressions of climate is the foundation of synoptic climatology and traditionally underpins the process of interpretative weather forecasting. The basic premise of synoptic climatology is that the large-scale atmospheric circulation exerts some control over weather and related environmental phenomena at the Earth's surface, thereby providing a level of deterministic forcing which influences the local weather. This directly leads to the use of atmospheric circulation patterns as a means to express drivers of weather (and climate) variability. Self-Organizing Maps (SOM, Kohonen 2001) is a pattern clustering method that is used as one of the methods to derive synoptic circulation types in this and other contexts, including statistical downscaling (e.g. Hewitson and Crane 2006;Yin et al. 2011;Ohba et al. 2016) and process-based validation of GCMs (e.g. Brown et al. 2010;Finnis et al. 2009;Higgins and Cassano 2010).In the application of SOM to study climate variability, the evolution of synoptic drivers of weather is typically represented by progression through classes of daily synoptic states identified as SOM nodes. That progression Abstract Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disa...