Increased concentrations of atmospheric greenhouse gases have led to a global mean surface temperature 1.0°C higher than during the pre-industrial period. We expand on the recent IPCC Special Report on global warming of 1.5°C and review the additional risks associated with higher levels of warming, each having major implications for multiple geographies, climates, and ecosystems. Limiting warming to 1.5°C rather than 2.0°C would be required to maintain substantial proportions of ecosystems and would have clear benefits for human health and economies. These conclusions are relevant for people everywhere, particularly in low- and middle-income countries, where the escalation of climate-related risks may prevent the achievement of the United Nations Sustainable Development Goals.
An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6°C over the subtropics and 3-5°C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African climate change and climate change adaptation in Africa. OPEN ACCESS RECEIVED
ABSTRACT:The projected climate-change signal in simulations by the Conformal-Cubic Atmospheric Model (CCAM) over southern Africa is presented, with particular emphasis on the projected changes in circulation over the region. Current (1975Current ( -2005 and future (2070-2100; A2 scenario) climate simulations are used for this purpose.In the austral winter of the future climate, frontal rain bands are displaced to the south as a result of the subtropical highpressure belt intensifying to the south of the subcontinent. In spring and autumn, mid-and upper-level highs are simulated to become more prominent over the eastern and central parts of southern Africa. The enhanced subsidence associated with these systems results in generally lower rainfall totals over much of the south-eastern subcontinent. To the north of these highs, enhanced westward moisture advection contributes to increased rainfall totals over northern Mozambique, whilst along the western periphery of the anomalously strong highs, enhanced southward moisture advection results in higher rainfall totals over Namibia, Botswana and the central and western interior of South Africa. In mid-summer, the Indian Ocean High (IOH) is simulated to intensify most over the south-western Indian Ocean (IO). This seemingly results in the more frequent occurrence of the cloud bands that constitute the South Indian Convergence Zone (SICZ) over the southeastern subcontinent -resulting in generally wetter conditions over this region.
SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020, COVID-19 was present in 213 countries and territories, with over 12 million confirmed cases and over half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that the transmission of SARS-CoV-2 could be modulated by seasonally varying environmental factors such as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are appearing online, and some have been published in peer-reviewed journals. Initially, these studies raised the hypothesis that climatic conditions would subdue the viral transmission rate in places entering the boreal summer, and that southern hemisphere countries would experience enhanced disease spread. For the latter, the COVID-19 peak would coincide with the peak of the influenza season, increasing misdiagnosis and placing an additional burden on health systems. In this review, we assess the evidence that environmental drivers are a significant factor in the trajectory of the COVID-19 pandemic, globally and regionally. We critically assessed 42 peer-reviewed and 80 preprint publications that met qualifying criteria. Since the disease has been prevalent for only half a year in the northern, and one-quarter of a year in the southern hemisphere, datasets capturing a full seasonal cycle in one locality are not yet available. Analyses based on space-for-time substitutions, i.e., using data from climatically distinct locations as a surrogate for seasonal progression, have been inconclusive. The reported studies present a strong northern bias. Socio-economic conditions peculiar to the ‘Global South’ have been omitted as confounding variables, thereby weakening evidence of environmental signals. We explore why research to date has failed to show convincing evidence for environmental modulation of COVID-19, and discuss directions for future research. We conclude that the evidence thus far suggests a weak modulation effect, currently overwhelmed by the scale and rate of the spread of COVID-19. Seasonally modulated transmission, if it exists, will be more evident in 2021 and subsequent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.