An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6°C over the subtropics and 3-5°C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African climate change and climate change adaptation in Africa. OPEN ACCESS RECEIVED
The impact of irrigation on the surface energy budget in the U.S. high plains is investigated. Four 15-day simulations were conducted: one using a 1997 satellite-derived estimate of farmland acreage under irrigation in Nebraska (control run), two using the Olson Global Ecosystem (OGE) vegetation dataset (OGE wet run and OGE dry run), and the fourth with the Kuchler vegetation dataset (natural vegetation run) as lower boundary conditions in the Colorado State University Regional Atmospheric Modeling System (RAMS). In the control and OGE wet simulations, the topsoil in the irrigated locations, up to a depth of 0.2 m, was saturated at 0000 UTC each day for the duration of the experiment (1-15 July 1997). In the other two runs, the soil was allowed to dry out, except when replenished naturally by rainfall. Identical observed atmospheric conditions were used along the lateral boundary in all four cases. The area-averaged model-derived quantities for the grid centered over Nebraska indicate significant differences in the surface energy fluxes between the control (irrigated) and the ''dry'' simulations. For example, a 36% increase in the surface latent heat flux and a 2.6C elevation in dewpoint temperature between the control run and the OGE dry run is shown. Surface sensible heat flux of the control run was 15% less and the near-ground temperature was 1.2C less compared to the OGE dry run. The differences between the control run and the natural vegetation run were similar but amplified compared to the control run-OGE dry run comparisons. Results of statistical analyses of long-term (1921-2000) surface temperature data from two sites representing locations of extensive irrigated and nonirrigated land uses appear to support model results presented herein of an irrigation-related cooling in surface temperature. Growing season monthly mean and monthly mean maximum temperature data for the irrigated site indicate a steady decreasing trend in contrast to an increasing trend at the nonirrigated site.
A storm-resolving version of the Regional Atmospheric Modeling System is executed over St. Louis, Missouri, on 8 June 1999, along with sophisticated boundary conditions, to simulate the urban atmosphere and its role in deep, moist convection. In particular, surface-driven low-level convergence mechanisms are investigated. Sensitivity experiments show that the urban heat island (UHI) plays the largest role in initiating deep, moist convection downwind of the city. Surface convergence is enhanced on the leeward side of the city. Increased momentum drag over the city induces convergence on the windward side of the city, but this convergence is not strong enough to initiate storms. The nonlinear interaction of urban momentum drag and the UHI causes downwind convection to erupt later, because momentum drag over the city regulates the strength of the UHI. In all simulations including a UHI, precipitation totals are enhanced downwind of St. Louis. Topography around St. Louis also affects storm development. There is a large sensitivity of simulated urban-enhanced convection to the details of the urban surface model.
A B S T R A C T This paper documents the diverse role of land-use/land-cover change on precipitation. Since land conversion continues at a rapid pace, this type of human disturbance of the climate system will continue and become even more significant in the coming decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.