2010
DOI: 10.1016/j.ejc.2009.10.009
|View full text |Cite
|
Sign up to set email alerts
|

A systematic approach to matrix forms of the Pascal triangle: The twelve triangular matrix forms and relations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0
2

Year Published

2011
2011
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 15 publications
0
3
0
2
Order By: Relevance
“…• m = 3: trinomial coefficients A027907; The first four rows give the values: Other related results can be found in [2], [3] and [4].…”
Section: Introductionmentioning
confidence: 99%
“…• m = 3: trinomial coefficients A027907; The first four rows give the values: Other related results can be found in [2], [3] and [4].…”
Section: Introductionmentioning
confidence: 99%
“…. , k l F (l, l)), (6) becomes nL = v, where L = (l d,a ) is a Pascal matrix: l d,a = d a [26]. Since L −1 = (m a,d ) has m a,d = (−1) d+a a d , we obtain the formula for P D (M, k; l, d).…”
Section: Partial Decodingmentioning
confidence: 96%
“…Muitos algoritmos eficientes têm sido desenvolvidos visando reduzir esta complexidade aritmética [3]. A utilização do triângulo de Pascal [2] na definição da TNP permite que sejam exploradas relações bem conhecidas, o que leva a implementações eficientes da mesma [12]. Em formato matricial, tem-se V = P N v, em que os elementos de…”
Section: Preliminaresunclassified