SARS-CoV-2 is the coronavirus pathogen of the currently prevailing COVID-19 pandemic. It relies on its main protease (MPro) for replication and pathogenesis. MPro is a demonstrated target for the development of antivirals for SARS-CoV-2. Past studies have systematically explored tripeptidyl inhibitors such as nirmatrelvir as MPro inhibitors. However, dipeptidyl inhibitors especially those with a spiro residue at their P2 position have not been systematically investigated. In this work, we synthesized about 30 reversibly covalent dipeptidyl MPro inhibitors and characterized them on in vitro enzymatic inhibition potency, structures of their complexes with MPro, cellular MPro inhibition potency, antiviral potency, cytotoxicity, and in vitro metabolic stability. Our results indicated that MPro has a flexible S2 pocket that accommodates dipeptidyl inhibitors with a large P2 residue and revealed that dipeptidyl inhibitors with a large P2 spiro residue such as (S)-2-azaspiro[4,4]nonane-3-carboxylate and (S)-2-azaspiro[4,5]decane-3-carboxylate have optimal characteristics. One compound MPI60 containing a P2 (S)-2-azaspiro[4,4]nonane-3-carboxylate displayed high antiviral potency, low cellular cytotoxicity, and high in vitro metabolic stability and can be potentially advanced to further preclinical tests.