The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID‐19 treatment option. Guided by previous medicinal chemistry studies about SARS‐CoV‐1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β‐(S‐2‐oxopyrrolidin‐3‐yl)‐alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active‐site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS‐CoV‐2‐induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS‐CoV‐2‐induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID‐19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra‐high antiviral potency.
Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas diseaseTrypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (K i * = 18− 350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active site cysteine C145. All inhibitors display high potency with IC50 values at or below 100 nM. The most potent compound MPI3 has as an IC50 value as 8.5 nM. Crystallographic analyses of SC2MPro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.