Duloxetine, a serotonin and norepinephrine reuptake inhibitor, is the best-established treatment for painful chemotherapyinduced peripheral neuropathy (CIPN). While it is only effective in little more than half of patients, our ability to predict patient response remains incompletely understood. Given that stress exacerbates CIPN, and that the therapeutic effect of duloxetine is thought to be mediated, at least in part, via its effects on adrenergic mechanisms, we evaluated the contribution of neuroendocrine stress axes, sympathoadrenal and hypothalamic-pituitary-adrenal, to the effect of duloxetine in preclinical models of oxaliplatin-and paclitaxel-induced CIPN. Systemic administration of duloxetine, which alone had no effect on nociceptive threshold, both prevented and reversed mechanical hyperalgesia associated with oxaliplatin-and paclitaxel-CIPN. It more robustly attenuated oxaliplatin CIPN in male rats, while it was more effective for paclitaxel CIPN in females. Gonadectomy attenuated these sex differences in the effect of duloxetine. To assess the role of neuroendocrine stress axes in the effect of duloxetine on CIPN, rats of both sexes were submitted to adrenalectomy combined with fixed level replacement of corticosterone and epinephrine. While CIPN, in these rats, was of similar magnitude to that observed in adrenal-intact animals, rats of neither sex responded to duloxetine. Furthermore, duloxetine blunted an increase in corticosterone induced by oxaliplatin, and prevented the exacerbation of CIPN by sound stress. Our results demonstrate a role of neuroendocrine stress axes in duloxetine analgesia (anti-hyperalgesia) for the treatment of CIPN.