Sickle cell disease (SCD) is a blood disease caused by a single nucleotide substitution (T > A) in the beta globin gene on chromosome 11. The single point mutation (Glu6Val) promotes polymerization of hemoglobin S (HbS) and causes sickling of erythrocytes. Vaso-occlusive painful crises are associated with recurrent and long-term use of analgesics/opioids and hydroxyurea (HU) by people living with SCD. The present analysis offers a stateof-the-art expert review of the effectiveness of pharmacogenomics/genetics of pain management in SCD, with specific focus on HU and opioids. The literature search used the following keywords: SCD, pharmacogenomics, pharmacogenetics, pain, antalgics, opioids, morphine, and HU. The literature was scanned until March 2016, with specific inclusion of targeted landmark and background articles on SCD. Surprisingly, our review identified only a limited number of studies that addressed the genetic/genomic basis of variable responses to pain (e.g., variants in OPRM1, HMOX-1, GCH1, VEGFA COMT genes), and pharmacogenomics of antalgics and opioids (e.g., variants in OPRM1, STAT6, ABCB1, and COMT genes) in SCD. There has been greater progress made toward identifying the key genomic variants, mainly in BCL11A, HBS1L-MYB, or SAR1, which contribute to response to HU treatment. However, the complete picture on pharmacogenomic determinants of the above therapeutic phenotypes remains elusive. Strikingly, no study has been conducted in sub-Saharan Africa where majority of the patients with SCD live. This alerts the broader global life sciences community toward the existing disparities in optimal and ethical targeting of research and innovation investments for SCD specifically and precision medicine and pharmacology research broadly.