In Abbe's formulation, source optimization (SO) is often formulated into a linear or quadratic problem, depending on the choice of objective functions. However, the conventional approach for the resist image, involving a sigmoid transformation of the aerial image, results in an objective with a functional form. The applicability of the resist-image objective to SO or simultaneous source and mask optimization (SMO) is therefore limited. In this paper, we present a linear combination of two quadratic line-contour objectives to approximate the resist image effect for fast convergence. The line-contour objectives are based on the aerial image on drawn edges using a constant threshold resist model and that of pixels associated with an intensity minimum for side-lobe suppression. A conjugate gradient method is employed to assure the convergence to the global minimum within the number of iterations less than that of source variables. We further compare the optimized illumination with the proposed line-contour objectives to that with a sigmoid resist-image using a steepest decent method. The results show a 100x speedup with comparable image fidelity and a slightly improved process window for the two cases studied.