Keywords: human gut microbiome, in silico, metabolome, metabolic modelingThe gut microbiota is well known to affect host metabolic phenotypes. The systemic effects of the gut microbiota on host metabolism are generally evaluated via the comparison of germfree and conventional mice, which is impossible to perform for humans. Hence, it remains difficult to determine the impact of the gut microbiota on human metabolic phenotypes. We demonstrate that a constraint-based modeling framework that simulates "germfree" and "exgermfree" human individuals can partially fill this gap and allow for in silico predictions of systemic human-microbial cometabolism. To this end, we constructed the first constraint-based host-microbial community model, comprising the most comprehensive model of human metabolism and 11 manually curated, validated metabolic models of commensals, probiotics, pathogens, and opportunistic pathogens. We used this host-microbiota model to predict potential metabolic host-microbe interactions under 4 in silico dietary regimes. Our model predicts that gut microbes secrete numerous health-relevant metabolites into the lumen, thereby modulating the molecular composition of the body fluid metabolome. Our key results include the following: 1. Replacing a commensal community with pathogens caused a loss of important host metabolic functions. 2. The gut microbiota can produce important precursors of host hormone synthesis and thus serves as an endocrine organ. 3. The synthesis of important neurotransmitters is elevated in the presence of the gut microbiota. 4. Gut microbes contribute essential precursors for glutathione, taurine, and leukotrienes. This computational modeling framework provides novel insight into complex metabolic host-microbiota interactions and can serve as a powerful tool with which to generate novel, non-obvious hypotheses regarding host-microbe co-metabolism.