Abstract. The study investigates the role of air-sea interface using numerical simulations of an Atlantic Hurricane Arthur (2014). More specifically, present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model where a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy 5 dissipation due to whitecaps, where whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including sea state dependent momentum flux, sea spray mediated heat flux and combination of former two processes with sea spray mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations 10 were able to capture the storm track and intensity, where the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray mediated heat fluxes are applied in conjunction with sea state dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when spray mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here alludes to the role surface friction plays in intensification of a TC.