A new third-generation spectral wave model is presented for prediction of the wave climates in offshore and coastal areas. The essential topic of the present paper is new numerical techniques for solution of the governing equations. The discretisation in the geographical space and the spectral space is based on cell-centred finite volume technique. In the geographical space, an unstructured mesh is applied. Due to the high degree of flexibility, unstructured meshes are very efficient to deal with problems of different characteristic scales. The time integration is performed using a fractional step approach, where an efficient multisequence explicit method is applied for the propagation process. The model is verified by comparison with observations for two real field cases.
Hydrodynamic simulations in coastal engineering studies are still most commonly carried out using two-dimensional vertically integrated mathematical models. As yet, threedimensional models are too expensive to be put into general use. However, the tendency with 2-D models is to use finer and finer resolution so that it becomes necessary to include approximations to some 3-D phenomena. It has been shown by many authors that simulations of large scale eddies can be quite realistic in 2-D models (c.f. Abbott et al. 1985). Basically there exists two different mechanisms of circulation generation. The first one is based on a balance between horizontally and grid-resolved momentum transfers and the bed resistance - i.e. a balance between the convective momentum terms and the bottom shear stress. The second one is due to momentum transfers that are not resolved at the grid scale but appears instead as horizontally distributed shear stresses. In many practical situations the circulations will be governed by the first mechanism. This is the case if the diameter of the circulation and the grid size is much larger than the water depth. In this situation the eddies are friction dominated so that the effect of sub-grid eddy viscosity is limited. In this case 2-D models are known to produce very realistic results and several comparisons with measurements have been reported in the literature.
The accurate assessment of_ wave loads is often of governing importance for the safe and e90nQmic fls ign of offshore structures. The present paper describes a verified model technique which takes into account the effect of_limited water depth on extreme wave conditions. Also, it describes a method of statistical analysis which takes into account that the data is provided by a model and not by measurements.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.