The heptafluoroisopropyl group is emerging as a privileged chemotype in contemporary agrochemistry and features prominently in the current portfolio of leading insecticides. To reconcile the expansive potential of this module with the synthetic challenges associated with preparing crowded, fluorinated motifs, I(I)/I(III) catalysis has been leveraged. Predicated on in situ generation of p-TolIF2, this route enables the direct difluorination of α-trifluoromethyl-β-difluoro-styrenes in a single operation. This formal addition of fluorine across the alkene π-bond is efficient (up to 91%) and is compatible with a broad range of functional groups. The ArCF(CF3)2 moiety is conformationally pre-organized, with the C(sp3)-F bond co-planar to the framework of the aryl ring, thereby minimizing 1,3-allylic strain. Moreover, orthogonal multipolar C-F•••C=O interactions have been identified in a phathalimide derivative. It is envisaged that this programmed vicinal difluorination enabled by a hypervalent iodine species will find application in functional molecule design in a broader sense.