Background
Three-dimensional (3D) printing is an emerging technology widely used in medical education. However, its role in the teaching of human anatomy needs further evaluation.
Methods
PubMed, Embase, EBSCO, SpringerLink, and Nature databases were searched systematically for studies published from January 2011 to April 2020 in the English language. GRADEprofiler software was used to evaluate the quality of literature. In this study, a meta-analysis of continuous and binary data was conducted. Both descriptive and statistical analyses were used.
Results
Comparing the post-training tests in neuroanatomy, cardiac anatomy, and abdominal anatomy, the standardized mean difference (SMD) of the 3D group and the conventional group were 1.27, 0.37, and 2.01, respectively (p < 0.05). For 3D vs. cadaver and 3D vs. 2D, the SMD were 0.69 and 1.05, respectively (p < 0.05). For answering time, the SMD of the 3D group vs. conventional group was – 0.61 (P < 0.05). For 3D print usefulness, RR = 2.29(P < 0.05). Five of the six studies showed that satisfaction of the 3D group was higher than that of the conventional group. Two studies showed that accuracy of answering questions in the 3D group was higher than that in the conventional group.
Conclusions
Compared with students in the conventional group, those in the 3D printing group had advantages in accuracy and answering time. In the test of anatomical knowledge, the test results of students in the 3D group were not inferior (higher or equal) to those in the conventional group. The post-training test results of the 3D group were higher than those in the cadaver or 2D group. More students in the 3D printing group were satisfied with their learning compared with the conventional group. The results could be influenced by the quality of the randomized controlled trials. In a framework of ethical rigor, the application of the 3D printing model in human anatomy teaching is expected to grow further.