This paper presents the design of a printed step-type monopole antenna for biological tissue analysis and medical imaging applications in the microwave frequency range. The design starts from a very simple and widely known rectangular monopole antenna, and different modifications to the antenna geometry are made in order to increase the bandwidth. The antenna dimensions are optimized by means of a parametric analysis of each dimension using a 3-D electromagnetic simulator based on the finite element method. The optimized antenna, with final dimensions of 40 × 36 mm2, is manufactured onto a low-cost FR4 (fiber glass epoxy) substrate. The characteristics of the antenna have been measured inside an anechoic chamber, obtaining an omnidirectional radiation pattern and a working frequency range between 2.7 GHz and 11.4 GHz, which covers the UWB frequencies and enables the use of the antenna in medical imaging applications. Finally, the behaviour of four of these antennas located around a realistic breast model, made with biocompatible materials, has been analysed with the electromagnetic simulator, obtaining good results and demonstrating the usefulness of the designed antenna in the proposed application.
This work presents a study on the implementation and manufacturing of low-cost microwave electronic circuits, made with additive manufacturing techniques using fused deposition modeling (FDM) technology. First, the manufacturing process of substrates with different filaments, using various options offered by additive techniques in the manufacture of 3D printing parts, is described. The implemented substrates are structurally analyzed by ultrasound techniques to verify the correct metallization and fabrication of the substrate, and the characterization of the electrical properties in the microwave frequency range of each filament is performed. Finally, standard and novel microwave filters in microstrip and stripline technology are implemented, making use of the possibilities offered by additive techniques in the manufacturing process. The designed devices were manufactured and measured with good results, which demonstrates the possibility of using low-cost 3D printers in the design process of planar microwave circuits.
The number of plants, or planting density, is a key factor in corn crop yield. The objective of the present research work was to count corn plants using images obtained by sensors mounted on an unmanned aerial vehicle (UAV). An experiment was set up with five levels of nitrogen fertilization (140, 200, 260, 320 and 380 kg/ha) and four replicates, resulting in 20 experimental plots. The images were taken at 23, 44 and 65 days after sowing (DAS) at a flight altitude of 30 m, using two drones equipped with RGB sensors of 12, 16 and 20 megapixels (Canon PowerShot S100_5.2, Sequoia_4.9, DJI FC6310_8.8). Counting was done through normalized cross-correlation (NCC) for four, eight and twelve plant samples or templates in the a* channel of the CIELAB color space because it represented the green color that allowed plant segmentation. A mean precision of 99% was obtained for a pixel size of 0.49 cm, with a mean error of 2.2% and a determination coefficient of 0.90 at 44 DAS. Precision values above 91% were obtained at 23 and 44 DAS, with a mean error between plants counted digitally and visually of ±5.4%. Increasing the number of samples or templates in the correlation estimation improved the counting precision. Good precision was achieved in the first growth stages of the crop when the plants do not overlap and there are no weeds. Using sensors and unmanned aerial vehicles, it is possible to determine the emergence of seedlings in the field and more precisely evaluate planting density, having more accurate information for better management of corn fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.