This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
AbstractThe constitutively active missense allele of Arabidopsis phytochrome B, AtPHYB Y276H or AtYHB, encodes a polypeptide that adopts a light-insensitive, physiologically active conformation capable of sustaining photomorphogenesis in darkness. Here, we show that the orthologous OsYHB allele of rice phytochrome B (OsPHYB Y283H ) also encodes a dominant "constitutively active" photoreceptor through comparative phenotypic analyses of AtYHB and OsYHB transgenic lines of four eudicot species, Arabidopsis thaliana, Nicotiana tabacum (tobacco), Nicotiana sylvestris and Solanum lycopersicum cv. MicroTom (tomato), and of two monocot species, Oryza sativa ssp. japonica and Brachypodium distachyon. Reciprocal transformation experiments show that the gainof-function constitutive photomorphogenic (cop) phenotypes by YHB expression are stronger in host plants within the same class than across classes. Our studies also reveal additional YHB-dependent traits in adult plants, which include extreme shade tolerance, both early and late flowering behaviors, delayed leaf senescence, reduced tillering, and even viviparous seed germination. However, the strength of these gainof-function phenotypes depends on the specific combination of YHB allele and species/cultivar transformed. Flowering and tillering of OsYHB-and OsPHYB-expressing lines of rice Nipponbare and Kitaake cultivars were compared, also revealing differences in YHB/PHYB allele versus genotype interaction on the phenotypic behavior of the two rice cultivars. In view of recent evidence that the regulatory activity of AtYHB is not only light insensitive but also temperature insensitive, selective YHB expression is expected to yield improved agronomic performance of both dicot and monocot crop plant species not possible with wild-type PHYB alleles.