P;, YY-M.; iightner, D. A. J. Am. Ckm. soc. ihi, 113, (35) Brodcrsen, R. Acta Chem. Scand. 1966, 20, 2895. (36) Hansen, P. E.; Thiessen, H.; Brodeisen, R. Acta Chem. Scand. 1979, (37) Carey, M. C.; Koretsky, A. P. Biochem. J. 1979, 179, 675. (38) Candeloro De Sanctis, S.; &bo, V. M.; Giglio, E.; Pagliuca, S.; Pavel, (39) Giglio, E. Nature 1969, 222, 339. (40) Pavel, N. V.; Quagliata, C.; Scarcclli, N. Z. Kristallogr. 1976,144, (41) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swim-3583. 833, 281. N. V.; Quagliata, C. Acta Crystallogr., Sect. B 1978, 834, 1928. 64. inathan, s.; Karplus, M. J. Comp. Chem. 1983, 4, 187. (42) Coiro, V. M.; Giglio, E.; Quagliata, C. Acta Crysrallogr., Sect. B 1972. B28. 3601. (43) Lightner, D. A. In Bilirubin; Heirwegh, K. P. M., Brown, S. B., Eds.; (44) Overbeek, J. T. G.; Vink, C. L. J.; Deenstra, H. Red. Trav. Chim. (50) Zhu, X. X.; Brown, G. R.; St-Pierre, L. E. Can. J. Spectrosc. 1987, (51) Kamisaka, K.; Listowsky, I.; Gatmaitan, Z.; Arias, I. M. Biochemistry (52) Lindman. B. In NMR of Newly Accessible Nuclei; Laszlo, P., Ed.; (53) Grasdalen, H.; Kvam, B.By means of pulse radiolysis the aqueous one&ctron reduction potential and pK, of the 5-alkylated 4a-hydroxy-4a,5dihydrohvin radical cation were determined. The same properties were estimated for the corresponding pseudobase radical cation of authentic flavin. The latter radical appeared not to form upon hydrolysis in water of one-electron oxidized flavin, FP. By use of the present data and previously determined values the events during bacterial luminescence were quantified. The annihilation of an intimate radical ion pair is identified as the chemiexcitation step. The energy released in this process is shown to exceed by ca. 1 eV the minimum energy required for the population of the emitting state of 4a-hydroxy-4a,5dihydroflavin. It is suggested that, initially, a low lying second excited state may be generated, which subsequently relaxes into the emitting singlet. This model also rationalizes the findings in the presence of lumazine or flavin mononucleotide (FMN). We propose that energy transfer from this state to lumazine protein or FMN-containing yellow fluorescent protein occurs by a collision mechanism in a tight complex, in competition with decay into the emitting lowest singlet of 4ahydroxy-4a,S-dihydroflavin.