Anais Do 15. Congresso Brasileiro De Inteligência Computacional 2021
DOI: 10.21528/cbic2021-34
|View full text |Cite
|
Sign up to set email alerts
|

A Transfer Learning Approach for the Tattoo Detection Problem

Abstract: Tattoos are still poorly explored as a biometrics factor for human identification, especially in public security, where tattoos can play an important role for identifying criminals and victims. Tattoos are considered a soft biometrics, since they are not permanent and can change along time, differently from hard biometrics traits (fingerprint, iris, DNA, etc). The identification of tattoos are not simple, since they do not have a definite pattern or location. This fact increases the complexity of developing mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…A transferência de aprendizado ou Transfer Learning, refere-se a transferência de conhecimentos entre problemas semelhantes. Esta abordagem torna possível que ocorra uma reduc ¸ão do tempo gasto durante o treinamento do problema objetivo, uma melhor aprendizagem e consequentemente, melhores resultados finais [46], [47].…”
Section: F Automl E Transferência De Aprendizadounclassified
“…A transferência de aprendizado ou Transfer Learning, refere-se a transferência de conhecimentos entre problemas semelhantes. Esta abordagem torna possível que ocorra uma reduc ¸ão do tempo gasto durante o treinamento do problema objetivo, uma melhor aprendizagem e consequentemente, melhores resultados finais [46], [47].…”
Section: F Automl E Transferência De Aprendizadounclassified
“…The image was sourced from [4] To date, a significant amount of research had been done on the robust detection, description and matching of invariant features related to motif and pattern classification. Features extraction algorithm and classification methods were applied to batik motif and batik making using convolutional neural network (CNN) model architectures [6]- [10], using multiwindow and multiscale extended center symmetric local binary patterns (MU2ECS-LBP) [11] and [12], using scale invariant feature transform (SIFT) [13], [14] using gray level co-occurrence matrices (GLCM) [15], [16], fine arts [17]- [19], for license plate recognition [20], [21], and tattoo recognition [22]- [24]. Even though the reported performance was quite high but these methods still suffer from false positives due to similar features that contain more than one pattern and noisy background.…”
Section: Introductionmentioning
confidence: 99%