This work considers the infinite multi-server Markovian queueing model with balking and catastrophes where the rates of arrivals, service, balking, and catastrophes are time dependent. The catastrophes arrive as negative customers to the system. The arrival of negative customers to a queueing system removes the positive customers. The catastrophes may come either from another service station or from outside the system. In this paper, we obtained the transient solution of this model using the approach of probability-generating function. Also, we derived an expression of transient probabilities in terms of Volterra equation of the second kind. Furthermore, we obtained a measure for time-dependent expected number of customers in the system.