2014
DOI: 10.4236/jbnb.2014.51003
|View full text |Cite
|
Sign up to set email alerts
|

A Transparent Polyimide Film as a Biological Cell Culture Sheet with Microstructures

Abstract: The research on stem cell cultures has attracted much attention due to the recent development of regenerative medicine. Therefore, higher functionalities for devices used for culturing cells are strongly demanded. In this study, we fabricated cell culture sheets using transparent polyimide (PI), parylene (PA), and polyetheretherketone (PEEK) to make polymer materials that had microstructures. We then cultured stromal marrow cells (OP9) on them and investigated the cell alignment within the microstructures. Hot… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 34 publications
0
3
0
Order By: Relevance
“…The mHCN2-transfected MSCs preserved their viability, generated pacemaker current, grew on the porous Kapton® scaffolds with 1–3 μm diameter pore arrays, and established intercellular communication between opposite sides of the scaffold without transmigration through the pores. The polyimide films demonstrated suitable mechanical and thermal properties, and good biocompatibility, and have already been successfully applied to a vast range of biomedical investigations [ 13 17 ]. In parallel to the formation of functionally active HCN channels, the mHCN2-transfected MSCs expressed Cx43 necessary for communication through Cx43-based GJ channels and F-actin containing TNTs necessary for the biological pacemaker functioning.…”
Section: Discussionmentioning
confidence: 99%
“…The mHCN2-transfected MSCs preserved their viability, generated pacemaker current, grew on the porous Kapton® scaffolds with 1–3 μm diameter pore arrays, and established intercellular communication between opposite sides of the scaffold without transmigration through the pores. The polyimide films demonstrated suitable mechanical and thermal properties, and good biocompatibility, and have already been successfully applied to a vast range of biomedical investigations [ 13 17 ]. In parallel to the formation of functionally active HCN channels, the mHCN2-transfected MSCs expressed Cx43 necessary for communication through Cx43-based GJ channels and F-actin containing TNTs necessary for the biological pacemaker functioning.…”
Section: Discussionmentioning
confidence: 99%
“…Various commercial and noncommercial PI materials were proven as non-toxic by a multitude of in vitro, direct, or indirect, cytotoxicity assays. Most of them specifically declares to comply with the ISO guidelines, and investigate the viability, proliferation, degeneration, and lysis of different common cell types:L929 mouse fibroblast cells (Kapton, PI2611, Durimide 7020, Durimide 7510, PI2525, 6FDA-6FAP, EPICOLN-PPD) [27,41,44,48,51,52],3T3 mouse fibroblasts cells (Probimide 7520) [49],OP9 mouse stromal cells (Neopulim) [19],rat primary Schawnn cells (Kapton, PI2611, Durimide 7020) [27],rat astroglial cells (unknown PI trade name) [70],bovine endothelial cells (unknown PI trade name) [70],BHK-21 baby hamster kidney fibroblasts (PI2525, PI2771) [28],…”
Section: Biocompatibility Screening Of Polyimides By In Vitro Methodsmentioning
confidence: 99%
“…This section is dedicated to aromatic polyimides, which are planar imidic macromolecules containing rigid aromatic rings and various flexible, heteroaliphatic, unsymmetrical, bulky or pendant structural motifs. We chose to focus on the aromatic polymers since the majority of polyimidic materials tested for biomedical uses subscribe to this structural architecture, even if some commercial or in-house aliphatic backbones have found their way into the field [19,20]. Moreover, the review is mainly centered on polyimidic films (also encompassing foils and coatings) since, with some noticeable exceptions which will be underlined at their rightful place, this is the format chosen by most bio-related applications and devices.…”
Section: Polyimides: Synthesis General Features and Biomedical Amentioning
confidence: 99%