Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler-Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio T T 0 , but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid-Beam finite element with both linear and C1-continuous approximations together with the Curve-to-Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. A crucial problem of "contact locking" in contact elements showing stiff behavior despite the good convergence is identified. This problem is resolved within the developed CTSB contact element.