Markov random field (MRF) based methods have been widely used in high spatial resolution (HSR) image classification. However, many existing MRF-based methods put more emphasis on pixel level contexts while less on superpixel level contextual information. To cope with this issue, this article presents a novel bilevel contextual MRF framework, named BLC-MRF, for HSR imagery classification. Specifically, pixel and superpixel level dependence are incorporated into the proposed MRF model to fully exploit spectral-spatial contextual information and preserve object boundaries in HSR images. In BLC-MRF, a pixel level MRF model is first performed and then cascaded as an input of a superpixel level MRF. In superpixel level, unary and pairwise potential terms are constructed by using the superpixel probability estimation method and spectral histogram distance, respectively. At last, a contextual MRF model is conducted and the final classification map can be computed by using α-expansion algorithm. The benefits of BLC-MRF are twofold: first, the pixel and superpixel level contextual information can be exploited under MRF framework to preserve object boundaries for improving the classification performance, and, second, the algorithm can provide promising results with a small number of training samples. Experimental results on three HSR datasets demonstrate that the proposed approach outperforms several state-of-the-art methods in terms of the classification performance.