While contextualized embeddings have produced performance breakthroughs in many Natural Language Processing (NLP) tasks, Word Sense Disambiguation (WSD) has not benefited from them yet. In this paper, we introduce QBERT, a Transformerbased architecture for contextualized embeddings which makes use of a coattentive layer to produce more deeply bidirectional representations, better-fitting for the WSD task. As a result, we are able to train a WSD system that beats the state of the art on the concatenation of all evaluation datasets by over 3 points, also outperforming a comparable model using ELMo.