This work presents a review of several investigations on the topic of adhesive bonding at high and low temperatures. Durability and strength at extreme temperatures have always been a major limitation of adhesives that, given their polymeric nature, exhibit substantial degradation at temperatures where other structural materials (such as metals for example) have minute changes in mechanical properties. However, due to the inherent advantages of bonding, there is a large and continued effort aiming to improve the temperature resistance of adhesive joints, and this effort has been spread among the various topics that are discussed in this review. These topics include adhesive shrinkage and thermal expansion, adhesive properties, joint geometry optimization, and design techniques, among others. The findings of these research efforts have all found use in practical applications, helping to solve complex problems in a variety of high-tech industries where there is a constant need to produce light and strong components that can withstand large temperature gradients. Therefore, the final sections of this work include a discussion on two specific application areas that demonstrate the strict demands that extreme temperature use imposes on adhesive joints and the methods used to improve their performance.