Background: Chitosan is a polycationic polysaccharide derived from chitin that has been recognized as an effective elicitor in the production of secondary metabolites of many medicinal plants. In this study, the effect of abiotic elicitor (chitosan) at various concentrations on rosmarinic acid (RA) and total phenolic accumulation in shoot cultures of lemon balm was investigated.Results: Treatment of shoots by chitosan led to a noticeable induction of phenylalanine ammonia-lyase (PAL), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. Besides, the expression of PAL1, TAT and RAS genes and accumulation of RA and phenolic compound increased in chitosan-treated lemon balm shoots. Chitosan treatment also increased H 2 O 2 accumulation and the expression of RBOH, an essential gene implicated in ROS production. Also, the up-regulation of the OPR gene by exogenous chitosan was associated with the induction of endogenous JA determined by GC-MASS.
Conclusion:The present study showed that the induced production of rosmarinic acid by chitosan involves the trigger of defense-related enzymes, up-regulated expression of TAT and RAS genes, and stimulation of JA biosynthesis. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
ReferencesAebi H (1984) Catalase in vitro. Methods Enzymol 105:121-126 Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061-1069 Alami I, Jouy N, Clervet A (1999) The lipoxygenase pathway is involved in elicitor-induced phytoalexin accumulation in plane tree (Platanus acerifolia) cell-suspension cultures. J Phytopathol 147:515-519 Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337-1344 Algam S, Xie G, Li B, Yu S, Su T, Larsen J (2010) Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. J. Plant Pathol 92:593-600 Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The lutein-prevention and treatment for diseases. Transworld Research Network, India Amin AA, Rashad M, El-Abagy HMH (2007) Physiological effect of indole-3-butyric acid and salicylic acid on growth, yield and chemical constituents of onion plants. J Appl Sci Res 3:1554-1563 Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in nonmammals. Prog Lipid Res 48:148-170 Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441-451 Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983...