2018
DOI: 10.3390/app8071028
|View full text |Cite
|
Sign up to set email alerts
|

A UAV-Based Visual Inspection Method for Rail Surface Defects

Abstract: Rail surface defects seriously affect the safety of railway systems. At present, human inspection and rail vehicle inspection are the main approaches for the detection of rail surface defects. However, there are many shortcomings to these approaches, such as low efficiency, high cost, and so on. This paper presents a novel visual inspection approach based on unmanned aerial vehicle (UAV) images, and focuses on two key issues of UAV-based rail images: image enhancement and defects segmentation. With regards to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
41
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 84 publications
(44 citation statements)
references
References 38 publications
0
41
0
3
Order By: Relevance
“…(9) LGCS computes the designated verifier proxy blind signature dvpbs. (10) LGCS sends t(m) and dvpbs to the user. (11) User sends and dvpbs to UAV.…”
Section: Overview Of Dvpbsmentioning
confidence: 99%
See 1 more Smart Citation
“…(9) LGCS computes the designated verifier proxy blind signature dvpbs. (10) LGCS sends t(m) and dvpbs to the user. (11) User sends and dvpbs to UAV.…”
Section: Overview Of Dvpbsmentioning
confidence: 99%
“…(iv) Equipment Inspection and Maintenance. Wu et al proposed a visual inspection method for rail surface defects based on UAV, which can improve efficiency and reduce cost [10]. Addabbo et al proposed a UAV system for photovoltaic plant inspection [11].…”
Section: Introductionmentioning
confidence: 99%
“…Another style of surface defect detection can be found in the railway surface. A novel visual inspection approach based on UAV (unmanned aerial vehicle) images has been tested by Wu et al [18]. It characterizes the defective sub-regions and defect-free background sub-regions, and highlights the critical defect regions in the image analysis.…”
Section: Intelligent Imaging and Analysismentioning
confidence: 99%
“…Железная дорога -это сложное инженерное сооружение, требующее соблюдения различных нормативных документов в процессе своего строительства и эксплуатации. По данным съемки железных дорог с помощью БПЛА возможно оперативно выполнить построение продольных и поперечных профилей, определить геометрические параметры рельсовой колеи, междупутное расстояние, габариты приближения строений [10][11][12][13][14]. Точность определения данных расстояний не должна быть при этом меньше 3 см [15].…”
Section: методы и материалыunclassified