This paper presents a unified solution method to investigate the free vibration behaviors of laminated composite conical shell, cylindrical shell and annular plate with variable thickness and arbitrary boundary conditions using the Haar wavelet discretization method (HWDM). Theoretical formulation is established based on the first order shear deformation theory(FSDT) and displacement components are extended Haar wavelet series in the axis direction and trigonometric series in the circumferential direction. The constants generating by the integrating process are disposed by boundary conditions, and thus the equations of motion of total system including the boundary condition are transformed into an algebraic equations. Then natural frequencies of the laminated composite structures are directly obtained by solving these algebraic equations. Stability and accuracy of the present method are verified through convergence and validation studies. Effects of some material properties and geometric parameters on the free vibration of laminated composite shells are discussed and some related mode shapes are given. Some new results for laminated composite conical shell, cylindrical shell and annular plate with variable thickness and arbitrary boundary conditions are presented, which may serve as benchmark solutions.