Calculations of line shapes of highly excited (Rydberg) atoms and ions are important for many topics in plasma physics and astrophysics. However, the Stark broadening of the radiative transitions originating from high-n levels of hydrogen or hydrogen-like ions is rather complex, making the detailed calculations of their spectral structure very cumbersome. Here, we suggest a simple analytical method for an approximate calculation of such line shapes. The utility of the method is demonstrated in application to the line broadening in plasma, where a very good accuracy is achieved over a range of transitions, species and plasma parameters. Although the method is especially suitable for transitions with n 1, it describes rather well even first members of the spectroscopic series with n as low as 2. Accurate computer simulations are used to verify the validity of the method.