The radiative cooling of objects during daytime under direct sunlight has recently been shown to be significantly enhanced by utilizing nanophotonic coatings. Multilayer thin film stacks, 2D photonic crystals, etc. as coating structures improved the thermal emission rate of a device in the infrared atmospheric transparency window reducing considerably devices' temperature. Due to the increased heating in photovoltaic (PV) devices, that has significant adverse consequences on both their efficiency and life-time, and inspired by the recent advances in daytime radiative cooling, we developed a coupled thermal-electrical modeling to examine the physical mechanisms on how a radiative cooler affects the overall efficiency of commercial photovoltaic modules. Employing this modeling, which takes into account all the major processes affected by the temperature variation in a PV device, we evaluated the relative impact of the main radiative cooling approaches proposed so far on the PV efficiency, and we established required conditions for optimized radiative cooling. Moreover, we identified the validity regimes of the currently existing PV-cooling models which treat the PV coolers as simple thermal emitters. Finally, we assessed some realistic photonic coolers from the literature, compatible with photovoltaics, to implement the radiative cooling requirements, and demonstrated their associated impact on the temperature reduction and PV efficiency. Providing the physical mechanisms and requirements for cooling radiatively solar cells, our study provides guidelines for utilizing suitable photonic structures as radiative coolers, enhancing the efficiency and the lifetime of PV devices.