Nanostructures on bodies of biological inhabitants in severe environments can exhibit excellent thermoregulation, which provide inspirations for artificial radiative cooling materials. However, achieving both large‐scale manufacturing and flexible form‐compatibility to various applications needs remains as a formidable challenge. Here a biomimetic strategy is adopted to design a thermal photonic composite inspired by the previously unexplored golden cicada's evolutionarily optimized thermoregulatory ability. A microimprint combined with phase separation method is developed for fabricating a biomimetic photonic material made of porous polymer–ceramic composite profiled in microhumps. The composite demonstrates high solar reflectance (97.6%) and infrared emissivity (95.5%) in atmospheric window, which results in a cooling power of 78 W m−2 and a maximum subambient temperature drop of 6.6 °C at noon. Moreover, the technique facilitates multiform manufacturing of the composites beyond films, as demonstrated by additive printing into general 3D structures. This work offers biomimetic approach for developing high‐performance thermal regulation materials and devices.
Radiative cooling is a revolutionary sustainable thermoregulating technology in favor to fight against global warming and urban heat island effects. However, the conventional designed high infrared emissive coolers do not function satisfactorily under atmospheric counter radiation (cloudy, humid, reduced sky access conditions) nor for all‐season thermal requirement (cooling and/or heating). Dual‐mode asymmetric photonic mirror (APM) consisted of silicon‐based diffractive gratings is presented, approaching an all‐season and all‐terrain optimized radiative thermal regulation. Based on the mechanism of asymmetric diffraction through high refractive index contrast mediums, the designed APM establishes an asymmetric radiative heat transfer channel for cooling and heating. An average infrared asymmetry of 20% for outgoing and incoming radiation is achieved by the fabricated APM. The remarkable cooling power of APM surpasses 80% over the standalone radiative cooler (RC) for counter radiation conditions. Under cloudy sky, the cooling‐APM achieves 8 °C lower than RC standalone, while the heating‐APM 5.7 °C higher, which presents prominent advantages over conventional coolers for different thermal management needs. The proposed dual‐mode infrared asymmetric photonic structure is promising to overcome shortcomings of conventional radiative cooling and offers breakthrough developments in future energy‐saving thermal management system.
• Temporal, spatial, and structural features on NOx generation in China are shown • Driving forces of NOx generation from energy consumption were studied using LMDI • Energy intensity is the primary factor affecting the reduction of NOx generation • GDP per capita is the primary factor affecting the increase in NOx generation • Population spatial structure has a minor but clear role in increasing NOx generation
Photonic structures designed at sub‐wavelength scales have emerged as a promising avenue for various energy applications, including cooling devices, water harvesting, photovoltaics, and personal thermal management, which have significantly transformed the global energy landscape. Particularly, flexible photonic radiative cooling films, which facilitate heat dissipation from surfaces by emitting it into outer space via infrared radiation, have achieved great progress in recent years. In this review, the different approaches used to design photonic structures for manipulating solar reflectance and optimizing thermal emittance are summarized. On this basis, this review discusses advancements in flexible radiative cooling films that have been meticulously adhere to these design principles, alongside their cooling effects over recent years. Furthermore, a comprehensive overview of the progress is presented in the photonic integration with new functionality and the fabrication techniques of photonic structures. Lastly, this review highlights the remarkable potential of radiative coolers in various fields. In prospect, the widespread adoption of flexible photonic radiative cooling films holds immense promise for diverse applications.
Artificial photosynthesis is an effective way to convert solar energy into fuels, which is of great significance to energy production and reduction of atmospheric CO2 content. In recent years, 3D structured artificial photosynthetic system has made great progress as an effective design strategy. This review first highlights several typical mechanisms for improved artificial photosynthesis with 3D structures: improved light harvesting, mass transfer and charge separation. Then, we summarize typical examples of 3D structured artificial photosynthetic systems, including bioinspired structures, photonic crystals (PC), designed photonic structures (PC coupling structure, plasmon resonance structure, optical resonance structure, metamaterials), 3D-printed systems, nanowire integrated systems and hierarchical 3D structures. Finally, we discuss the problems and challenges to the application and development of 3D artificial photosynthetic system and the possible trends of future development. We hope this review can inspire more progress in the field of artificial photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.