The use of Monte Carlo treatment planning systems (TPS) in radiation therapy has increased the dosimetric accuracy of VMAT treatment sequences. However, this accuracy is compromised by not including the treatment couch into the treatment planning process. Therefore, the impact of the treatment couch on radiation delivery output was determined, and two different couch models (uniform couch model A vs two components model B) were included and tested in the Monaco TPS to investigate which model can better quantify the couch influence on radiation dose. Relative attenuation measurements were performed following procedures outlined by TG‐176 with three phantom positions for A–B direction: on the left half (L), in the center (C) and on the right half (R) of the couch. As well as absolute dose comparison of static fields of 10 × 10 cm2 that were delivered through the couch tops with that calculated in the TPS with the couch model at 2 mm and 5 mm computing grid size respectively. The most severe percentage deviation was 4.60% for the phantom positioned at the left half of the couch with 5 mm grid size at gantry angle 120°. The couch model was included in the TPS with a uniform ED of 0.26 g/cm3 or a two component model with a fiber 0.52 g/cm3 and foam core 0.1 g/cm3. After including the treatment couch, the maximum mean dose attenuation was reduced from 3.68% without couch included to (0.60, 0.83, 0.72, and 1.02) % for model A and model B at 2 and 5 mm voxel grid size. The results obtained showed that Model A performed better than the model B, demonstrating lower deviations from measurements and better robustness against dose grid resolution changes. Considering the results of this study, we propose the systematic introduction of the couch Model A in clinical routine. All the reported findings are valid for the Elekta iBEAM
® evo Extension 415 couch and these methods can also be used for other couch model.