2016 International Seminar on Intelligent Technology and Its Applications (ISITIA) 2016
DOI: 10.1109/isitia.2016.7828740
|View full text |Cite
|
Sign up to set email alerts
|

A wearable device for fall detection elderly people using tri dimensional accelerometer

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(10 citation statements)
references
References 3 publications
0
8
0
2
Order By: Relevance
“…Such systems can be broadly classified into threshold based and machine learning based systems. In [26][27][28], the tri-axial accelerometer and gyroscope sensor measurements are monitored for calculating the RMS values of acceleration and angular velocity of each axis and compared with a threshold value to detect fall events. In [29], the same methodology is performed with sensors present in a smartphone.…”
Section: Systems Based On Wearable Devicesmentioning
confidence: 99%
See 1 more Smart Citation
“…Such systems can be broadly classified into threshold based and machine learning based systems. In [26][27][28], the tri-axial accelerometer and gyroscope sensor measurements are monitored for calculating the RMS values of acceleration and angular velocity of each axis and compared with a threshold value to detect fall events. In [29], the same methodology is performed with sensors present in a smartphone.…”
Section: Systems Based On Wearable Devicesmentioning
confidence: 99%
“…Works on sensors which is prone to failure of detection or false trigger. [28] Triaxial accelerometer is used to measure the X, Y, and Z values and sent to a microcontroller where the measured values are compared with a threshold value for fall detection.…”
Section: Accuracy = 93%mentioning
confidence: 99%
“…Metode ambang batas (threshold) merupakan salah satu metode yang digunakan dalam algoritma klasifikasi aktivitas jatuh dan aktivitas biasa. [5][6][7]. Penentuan nilai threshold dilakukan dengan menganalisis semua nilai total percepatan dan total orientasi dari gerak aktivitas biasa atau activity of daily living (ADL), kemudian diambil nilai maksimalnya untuk dijadikan nilai threshold [5].…”
Section: B Metode Thresholdunclassified
“…Meski akurasi dari metode threshold tidak sebaik machine learning, namun metode ini lebih cocok digunakan pada perangkat yang dapat dipakai dan konsumsi energi yang rendah. Karena perhitungan metode ini sederhana dan dapat diimplementasikan pada perangkat dengan ukuran kecil [5,6]. Pada penelitian ini kami membuat suatu perangkat yang dapat mendeteksi jatuh yang harapannya dapat digunakan oleh lanjut usia menggunakan sensor accelerometer dan gyroscope berbasis mikrokontroler.…”
Section: Introductionunclassified
“…Hsieh et al [ 21 ] reported a novel hierarchical fall detection algorithm based on the measured acceleration data involving threshold-based and knowledge-based approaches to detect a fall event. Kurniawan et al [ 22 ] used a triaxis accelerometer to obtain the acceleration of the human body and then determined whether the fall occurs depending on the acceleration. Albert et al [ 23 ] used the accelerometer of the mobile phone to obtain the acceleration data, which is applied in the machine learning classifier to detect falls and classify the type of falls.…”
Section: Introductionmentioning
confidence: 99%