An assessment of measurement uncertainty is a task, which has to be the final step of every chemical assay. Apart from a commonly applied typical assessment method, Monte Carlo (MC) simulations may be used. The simulations are frequently performed by a computer program, which has to be written, and therefore some programming skills are required. It is also possible to use a commonly known spreadsheet and perform such simulations without writing any code. Commercial programs dedicated for the purpose are also available. In order to show the advantages and disadvantages of the ways of uncertainty evaluation, i.e., the typical method, the MC method implemented in a program and in a spreadsheet, and commercial programs, a case of pH measurement after two-point calibration is considered in this article. The ways differ in the required mathematical transformations, degrees of software usage, the time spent for the uncertainty calculations, and cost of software. Since analysts may have different mathematical and coding skills and practice, it is impossible to point out the best way of uncertainty assessment—all of them are just as good and give comparable assessments.