2011
DOI: 10.1587/elex.8.1245
|View full text |Cite
|
Sign up to set email alerts
|

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65nm CMOS technology

Abstract: Abstract:A wide-range all-digital duty-cycle corrector (ADDCC) with output clock phase alignment is presented in this paper. The proposed ADDCC can correct the duty-cycle error of the input clock to 50% duty-cycle. The acceptable duty-cycle range and frequency range of input clock is from 20% to 80% and from 250 MHz to 1 GHz, respectively. The proposed ADDCC is implemented on a standard performance 65 nm CMOS process, and the power consumption is 1.52 mW at 250 MHz and 5.83 mW at 1 GHz, respectively.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2019
2019

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…To eliminate the clock duty-cycle errors in memory interface channels, input clock buffers, and on-chip clock trees, typical high-speed DRAM and memory controllers utilize analog-type, digital-type or hybrid-type duty-cycle corrector (DCC) circuits [1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. The DCCs in DDR3, DDR4, LPDDR4, LPDDR5, and GDDR5 SDRAM applications performs duty-cycle error compensation of high-speed signal pins for a differential clock (CK/CKb), data signals (DQs), and a data strobe signal (DQS).…”
Section: Introductionmentioning
confidence: 99%
“…To eliminate the clock duty-cycle errors in memory interface channels, input clock buffers, and on-chip clock trees, typical high-speed DRAM and memory controllers utilize analog-type, digital-type or hybrid-type duty-cycle corrector (DCC) circuits [1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. The DCCs in DDR3, DDR4, LPDDR4, LPDDR5, and GDDR5 SDRAM applications performs duty-cycle error compensation of high-speed signal pins for a differential clock (CK/CKb), data signals (DQs), and a data strobe signal (DQS).…”
Section: Introductionmentioning
confidence: 99%