Today, satellite communication networks are being integrated into the infrastructure of modern Terrestrial communication networks and becoming popular for the delivery of educational content and data, as well as education-centric services, including information, tele-conferencing, entertainment, or 'edutainment' services. With fresh demand for new services and applications, it is becoming essential that wireless network architecture seamlessly interoperate with new and existing technologies, protocols and standards. This paper presents recent work on the use of hybrid wireless network infrastructures for delivering tele-education and e-learning applications to remote communities by combining a variety of satellite, terrestrial and wireless technologies, and provides the results from live scenarios carried out employing various methods of interoperability testing. The analysis of the results examines a number of different issues such as delay, jitter, packet loss, latency, throughput measurement, and bandwidth. By combining satellite and terrestrial (wireless) technologies, full coverage and high capacity can be achieved for true broadband services for delivering educational content. The interoperability among such diverse networks imposes a number of challenges regarding service provision and management.