Experiments with single-planar wire arrays (SPWA) and double PWAs (DPWAs) with brass 310 wires were carried out on the 1-MA Zebra generator at the University of Nevada, Reno. Brass 310 (70% Cu and 30% Zn) PWAs have either 10 or 16 wires with diameters of 10.9 or 7.62 μm, respectively. The diagnostic suite included a bolometer, fast X-ray detectors, an axially resolved time-integrated spectrometer, a time-gated spectrometer, a timegated pinhole camera, and a streak camera. A wire dynamic model was applied to study implosion characteristics, and non-LTE Cu and Zn kinetic models were used to model L-shell radiation from brass. The analysis of the time-gated spectra showed a correlation between the modeled electron temperature and the X-ray signal, and it agrees well with the maximum values from the time-integrated spatially resolved spectra. Modeling of time-gated and time-integrated spectra from brass PWAs indicates stronger opacity effects in L-shell lines for DPWAs.Index Terms-L-shell Cu radiation, L-shell Zn radiation, planar wire array (PWA), X-ray spectroscopy.