The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-aFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption nearedge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (258C) in an ostrich blood vessel model developed to test post-mortem 'tissue fixation' by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB þ O 2 . HB 2 O 2 . 2O 2 þO 2 . The well-known O 2 /haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O 2 /haeme interactions in the preservation of fossil soft tissues.