Around 20% of patients with acute lymphoblastic leukemia are Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia) and express the Bcr/Abl tyrosine kinase. Treatment with the tyrosine kinase inhibitor Imatinib is currently standard for chronic myelogenous leukemia, which is also caused by Bcr/Abl. However, Imatinib has shown limited efficacy for treating Ph-positive acute lymphoblastic leukemia. In our study, we have investigated the effect of Imatinib therapy on murine P190 Bcr/Abl lymphoblastic leukemia cells. Three of four cultures were very sensitive to treatment with 5 Amol/L Imatinib. Significant cell death also initially occurred when the same cultures were treated in the presence of stromal support. However, after 6 days, remaining cells started to proliferate vigorously. The Bcr/Abl tyrosine kinase present in the cells that were now able to multiply in the presence of 5 Amol/L Imatinib was still inhibited by the drug. In concordance with this, the Abl ATP-binding pocket domain of Bcr/Abl in the resistant cells did not contain point mutations which would make the protein Imatinib resistant. The effect of stroma in selecting Imatinibresistant lymphoblasts did not require direct cell-cell contact. SDF-1a could substitute for the presence of stromal cells. Our results show that stroma selects Imatinib-resistant Bcr/Abl P190 lymphoblasts that are less dependent on Bcr/Abl tyrosine kinase activity. Therefore, therapy for Ph-positive acute lymphoblastic leukemia, aimed at interfering with the protective effect of stroma in combination with Imatinib, could be of benefit for the eradication of the leukemic cells. (Cancer Res 2006; 66(10): 5387-93)