This paper reviews the development of three-dimensional (3D) structure-controlled InGaN quantum wells (QWs) for highly efficient multiwavelength emitters without using phosphors. Specifically, two representative structures are reviewed: 3D structures composed of stable planes with low surface energies and 3D structures composed of unstable planes. In the early stage of the research, 3D structures were grown on the (0001) polar plane through the selective area growth (SAG) technique based on metalorganic vapor phase epitaxy. Because GaN cannot grow on dielectric masks, different mask patterns were used to create various 3D facetted structures composed of stable facet planes. The InGaN QW parameters depend on the facet planes, which led to polychromatic emission, including white-light emission. After polychromatic light-emitting diodes (LEDs) on the (0001) polar plane were demonstrated, 3D QWs and LEDs were also demonstrated on the (
1
ˉ
1
ˉ
2
2
ˉ
) semipolar plane through SAG. There, the (0001) facet plane was excluded; consequently, all the facet QWs showed short radiative recombination lifetimes, which are beneficial for future applications in visible-light communication. To further enhance the controllability of the emission spectra from 3D QWs or LEDs, convex-lens-shaped 3D structures have been proposed. The smooth surface of such structures is composed of unstable planes and has continuously varying crystal tilts. Because QW parameters are dependent on the crystal tilt, polychromatic emission is achieved. This method demonstrates greater flexibility of the structure design, which is expected to result in greater controllability of emission spectra.