Abstract-Nowadays, applications of Frequency Selective Surfaces (FSS) for radar absorbing materials (RAM) are increasing, but it is still a challenge to select a proper FSS for a particular material as well as the dimensions of FSS for optimized absorption. Therefore, in this paper an attempt has been made to optimize the dimensions of FSS for microwave absorbing application using Genetic Algorithm (GA) approach. The considered frequency selective surfaces are composed of conducting patch elements pasted on the ferrite layer. FSS are used for filtration and microwave absorption. In this work, selection and optimization of FSS with radar absorbing material has been done for obtaining the maximum absorption at 8-12 GHz frequency. An equivalent circuit method has been used for the analysis of different FSS, which is further used to design fitness function of GA for optimizing the dimensions of FSS. Eight different available ferrite materials with frequency dependant permittivities and permeabilities have been used as material database. The GA optimization is proposed to select the proper material out of eight available materials with proper dimensions of FSS. The optimized results suggest the material from database and dimensions of FSS. The selected material is then mixed with epoxy and hardener, and coated over the aluminium sheet. Thereafter, all five FSS were fabricated on ferrite coated Al sheets using photolithographic method followed by wet etching. The absorption was measured for all FSS using absorption testing device (ATD) method at X-band. Absorption results showed that significant amount of absorption enhanced with the addition of proper FSS on radar absorbing coating.