The combination of high atomic number and high oxidation state in U materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl.
A major challenge in performing reactions in biological systems is the requirement for low substrate concentrations, often in the micromolar range. We report that copper cross-linked single-chain nanoparticles (SCNPs) are able to significantly increase the efficiency of copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reactions at low substrate concentration in aqueous buffer by promoting substrate binding. Using a fluorogenic click reaction and dye uptake experiments, a structure-activity study is performed with SCNPs of different size and copper content and substrates of varying charge and hydrophobicity. The high catalytic efficiency and selectivity are attributed to a mechanism that involves an enzyme-like substrate binding process. Saturation-transfer difference (STD) NMR spectroscopy, 2D-NOESY NMR, kinetic analyses with varying substrate concentrations, and computational simulations are consistent with a Michaelis-Menten, two-substrate, random-sequential enzyme-like kinetic profile. This general approach may prove useful for developing more-sustainable catalysts and agents for biomedicine and chemical biology.
Recent work has shown that polymeric catalysts can mimic some of the remarkable features of metalloenzymes by binding substrates in proximity to a bound metal center. We report here an unexpected role for the polymer: multivalent, reversible, and adaptive binding to protein surfaces allowing for accelerated catalytic modification of proteins. The catalysts studied are a group of coppercontaining single-chain polymeric nanoparticles (Cu I −SCNP) that exhibit enzyme-like catalysis of the copper-mediated azide−alkyne cycloaddition reaction. The Cu I −SCNP use a previously observed "uptake mode", binding small-molecule alkynes and azides inside a water-soluble amphiphilic polymer and proximal to copper catalytic sites, but with unprecedented rates. Remarkably, a combined experimental and computational study shows that the same Cu I − SCNP perform a more efficient click reaction on modified protein surfaces and cell surface glycans than do small-molecule catalysts. The catalysis occurs through an "attach mode" where the SCNPs reversibly bind protein surfaces through multiple hydrophobic and electrostatic contacts. The results more broadly point to a wider capability for polymeric catalysts as artificial metalloenzymes, especially as it relates to bioapplications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.