Clear cell renal cell carcinoma (KIRC) is the most common and highly malignant pathological type of kidney cancer, characterized by a profound metabolism dysregulation. As part of aspartate biosynthesis, mitochondrial GOT2 (glutamic-oxaloacetic transaminase 2) is essential for regulating cellular energy production and biosynthesis, linking multiple pathways. Nevertheless, the expression profile and prognostic significance of GOT2 in KIRC remain unclear. This study comprehensively analyzed the transcriptional levels, epigenetic regulation, correlation with immune infiltration, and prognosis of GOT2 in KIRC using rigorous bioinformatics analysis. We discovered that the expression levels of both mRNA and protein of GOT2 were remarkably decreased in KIRC tissues in comparison with normal tissues and were also significantly related to the clinical features and prognosis of KIRC. Remarkably, low GOT2 expression was positively associated with poorer overall survival (OS) and disease-free survival (DFS). Further analysis revealed that GOT2 downregulation is driven by DNA methylation in the promoter-related CpG islands. Finally, we also shed light on the influence of GOT2 expression in immune cell infiltration, suggesting that GOT2 may be a potential prognostic marker and therapeutic target for KIRC patients.