We consider the ionization of neon induced by a femtosecond laser pulse composed of overlapping, linearly polarized bichromatic extreme ultraviolet and infrared fields. In particular, we study the effects of the infrared light on a two-pathway ionization scheme for which Ne 2s 2 2p 5 3s 1 P is used as intermediate state. Using time-dependent calculations, supported by a theoretical approach based on the strong-field approximation, we analyze the ionization probability and the photoelectron angular distributions associated with the different sidebands of the ionization spectrum. Complex oscillations of the angular distribution anisotropy parameters as a function of the infrared light intensity are revealed. Finally, we demonstrate that coherent control of the asymmetry is achievable by tuning the infrared frequency to a nearby electronic transition.