Simple analytical expressions of mechanical resistance, such as those formulated by Skvor/Starr, are widely used to describe the mechanical-thermal noise performance of a condenser microphone. However, the Skvor/Starr approach does not consider the location effect of acoustic holes in the backplate and overestimates the total equivalent mechanical resistance and mechanical-thermal noise. In this paper, a modified form of the Skvor/Starr approach is proposed to address this hole location dependent effect. A mode shape factor, which consists of the zero order Bessel and modified Bessel functions, is included in Skvor's mechanical resistance formulation to consider the effect of the hole location in the backplate. With reference to two B&K microphones, the theoretical results of the A-weighted mechanical-thermal noise obtained by the modified Skvor/Starr approach are in good agreements with those reported experimental ones.