In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of developing inferences for the parameters of the log-linear link function. In this paper the geometric process is used for the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution using Fisher information matrix are also obtained. The statistical properties of the parameters and the confidence intervals are illustrated by a Simulation study.