“…In many applications, discrete samples of a continuous, and potentially complex, random process are generated as output, even though a continuous solution is desired. Some examples are given by particle-tracking of passive solute transport (e.g., Fernàndez-Garcia & Sanchez-Vila, 2011;Pedretti & Fernàndez-Garcia, 2013;Siirila-Woodburn et al, 2015;Carrel et al, 2018), reactive particle transport (e.g., Ding et al, 2012Ding et al, , 2017Schmidt et al, 2017;Sole-Mari et al, 2017;Sole-Mari et al, 2019;Sole-Mari & Fernàndez-Garcia, 2018;Benson et al, 2019;Perez et al, 2019;Engdahl et al, 2017Engdahl et al, , 2019, and Monte Carlo simulation (e.g., Taverniers et al, 2020). A long history of statistical estimation has sought to best fit some continuous density function to a sequence of random samples, including maximum likelihood estimation (Brockwell & Davis, 2016) and kernel density estimation (Silverman, 1986).…”