Heterogeneity and a paucity of measurements of key material properties undermine the veracity of quantitative predictions of subsurface flow and transport. For such model forecasts to be useful as a management tool, they must be accompanied by computationally expensive uncertainty quantification, which yields confidence intervals, probability of exceedance, and so forth. We design and implement novel multilevel Monte Carlo (MLMC) algorithms that accelerate estimation of the cumulative distribution functions (CDFs) of quantities of interest, for example, water breakthrough time or oil production rate. Compared to standard non-smoothed MLMC, the new estimators achieve a significant variance reduction at each discretization level by smoothing the indicator function with a Gaussian kernel or replacing standard Monte Carlo (MC) with the recently developed hierarchical Latinized stratified sampling (HLSS). After validating the kernel-smoothed MLMC and HLSS-enhanced MLMC methods on a single-phase flow test bed, we demonstrate that they are orders of magnitude faster than standard MC for estimating the CDF of breakthrough times in multiphase flow problems.
Multiphysics problems often involve components whose macroscopic dynamics is driven by microscopic random fluctuations. The fidelity of simulations of such systems depends on their ability to propagate these random fluctuations throughout a computational domain, including subdomains represented by deterministic solvers. When the constituent processes take place in nonoverlapping subdomains, system behavior can be modeled via a domain-decomposition approach that couples separate components at the interfaces between these subdomains. Its coupling algorithm has to maintain a stable and efficient numerical time integration even at high noise strengths. We propose a conservative domaindecomposition algorithm in which tight coupling is achieved by employing either Picard's or Newton's iterative method. Coupled diffusion equations, one of which has a Gaussian white-noise source term, provide a computational testbed for analysis of these two coupling strategies. Fully-converged ("implicit") coupling with Newton's method typically outperforms its Picard counterpart, especially at high noise levels. This is because the number of Newton iterations scales linearly with the amplitude of the Gaussian noise, while the number of Picard iterations can scale superlinearly. At large time intervals between two subsequent inter-solver communications, the solution error for single-iteration ("explicit") Picard's coupling can be several orders of magnitude higher than that for implicit coupling. Increasing the explicit coupling's communication frequency reduces this difference, but the resulting increase in computational cost can make it less efficient than implicit coupling at similar levels of solution error, depending on the communication frequency of the latter and the noise strength. This trend carries over
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.