2023
DOI: 10.1109/tc.2022.3212631
|View full text |Cite
|
Sign up to set email alerts
|

Accelerating Federated Learning With a Global Biased Optimiser

Abstract: Federated Learning (FL) is a recent development in distributed machine learning that collaboratively trains models without training data leaving client devices, preserving data privacy. In real-world FL, the training set is distributed over clients in a highly non-Independent and Identically Distributed (non-IID) fashion, harming model convergence speed and final performance. To address this challenge, we propose a novel, generalised approach for incorporating adaptive optimisation into FL with the Federated G… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 16 publications
0
0
0
Order By: Relevance