Remote data integrity checking (RDIC) enables a data storage server, say a cloud server, to prove to a verifier that it is actually storing a data owner's data honestly. To date, a number of RDIC protocols have been proposed in the literature. However, most of the constructions suffer from the issue of requiring complex key management. That is, they rely on the expensive public key infrastructure (PKI), which might hinder the deployment of RDIC in practice. In this paper, we propose a new construction of identity-based (ID-based) RDIC protocol by making use of key-homomorphic cryptographic primitive to reduce the system complexity and the cost for establishing and managing the public key authentication framework in PKI based RDIC schemes. We formalize ID-based RDIC and its security model including security against a malicious cloud server and zero knowledge privacy against a third party verifier. The proposed ID-based RDIC protocol leaks no information of the stored data to the verifier during the RDIC process. The new construction is proven secure against the malicious server in the generic group model and achieves zero knowledge privacy against a verifier. Extensive security analysis and implementation results demonstrate that the proposed protocol is provably secure and practical in the real-world applications. Abstract-Remote data integrity checking (RDIC) enables a data storage server, say a cloud server, to prove to a verifier that it is actually storing a data owner's data honestly. To date, a number of RDIC protocols have been proposed in the literature. However, most of the constructions suffer from the issue of requiring complex key management. That is, they rely on the expensive public key infrastructure (PKI), which might hinder the deployment of RDIC in practice. In this paper, we propose a new construction of identity-based (ID-based) RDIC protocol by making use of key-homomorphic cryptographic primitive to reduce the system complexity and the cost for establishing and managing the public key authentication framework in PKI based RDIC schemes. We formalize ID-based RDIC and its security model including security against a malicious cloud server and zero knowledge privacy against a third party verifier. The proposed ID-based RDIC protocol leaks no information of the stored data to the verifier during the RDIC process. The new construction is proven secure against the malicious server in the generic group model and achieves zero knowledge privacy against a verifier. Extensive security analysis and implementation results demonstrate that the proposed protocol is provably secure and practical in the real-world applications.
The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
The rapidly expanding number of IoT devices is generating huge quantities of data, but public concern over data privacy means users are apprehensive to send data to a central server for Machine Learning (ML) purposes. The easilychanged behaviours of edge infrastructure that Software Defined Networking provides makes it possible to collate IoT data at edge servers and gateways, where Federated Learning (FL) can be performed: building a central model without uploading data to the server. FedAvg is a FL algorithm which has been the subject of much study, however it suffers from a large number of rounds to convergence with non-Independent, Identically Distributed (non-IID) client datasets and high communication costs per round. We propose adapting FedAvg to use a distributed form of Adam optimisation, greatly reducing the number of rounds to convergence, along with novel compression techniques, to produce Communication-Efficient FedAvg (CE-FedAvg). We perform extensive experiments with the MNIST/CIFAR-10 datasets, IID/non-IID client data, varying numbers of clients, client participation rates, and compression rates. These show CE-FedAvg can converge to a target accuracy in up to 6× less rounds than similarly compressed FedAvg, while uploading up to 3× less data, and is more robust to aggressive compression. Experiments on an edge-computing-like testbed using Raspberry Pi clients also show CE-FedAvg is able to reach a target accuracy in up to 1.7× less real time than FedAvg.
Abstract-Coverage of interest points and network connectivity are two main challenging and practically important issues of Wireless Sensor Networks (WSNs). Although many studies have exploited the mobility of sensors to improve the quality of coverage and connectivity, little attention has been paid to the minimization of sensors' movement, which often consumes the majority of the limited energy of sensors and thus shortens the network lifetime significantly. To fill in this gap, this paper addresses the challenges of the Mobile Sensor Deployment (MSD) problem and investigates how to deploy mobile sensors with minimum movement to form a WSN that provides both target coverage and network connectivity. To this end, the MSD problem is decomposed into two sub-problems: the Target COVerage (TCOV) problem and the Network CONnectivity (NCON) problem. We then solve TCOV and NCON one by one and combine their solutions to address the MSD problem. The NP-hardness of TCOV is proved. For a special case of TCOV where targets disperse from each other farther than double of the coverage radius, an exact algorithm based on the Hungarian method is proposed to find the optimal solution. For general cases of TCOV, two heuristic algorithms, i.e., the Basic algorithm based on clique partition and the TV-Greedy algorithm based on Voronoi partition of the deployment region, are proposed to reduce the total movement distance of sensors. For NCON, an efficient solution based on the Steiner minimum tree with constrained edge length is proposed. The combination of the solutions to TCOV and NCON, as demonstrated by extensive simulation experiments, offers a promising solution to the original MSD problem that balances the load of different sensors and prolongs the network lifetime consequently.
Abstract-As a core security issue in reliable cloud storage, data integrity has received much attention. Data auditing protocols enable a verifier to efficiently check the integrity of the outsourced data without downloading the data. A key research challenge associated with existing designs of data auditing protocols is the complexity in key management. In this paper, we seek to address the complex key management challenge in cloud data integrity checking by introducing fuzzy identity-based auditing-the first in such an approach, to the best of our knowledge. More specifically, we present the primitive of fuzzy identity-based data auditing, where a user's identity can be viewed as a set of descriptive attributes. We formalize the system model and the security model for this new primitive. We then present a concrete construction of fuzzy identity-based auditing protocol by utilizing biometrics as the fuzzy identity. The new protocol offers the property of error-tolerance, namely, it binds private key to one identity which can be used to verify the correctness of a response generated with another identity, if and only if both identities are sufficiently close. We prove the security of our protocol based on the computational Diffie-Hellman assumption and the discrete logarithm assumption in the selective-ID security model. Finally, we develop a prototype implementation of the protocol which demonstrates the practicality of the proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.